16 // set new Time value using universal time
IT void Time::setTime(int h, int m, int s)

18 {

19 // validate hour, minute and second

20 if C (h >= && h <) & (m >= && m <) &&
21 (s>=0&& s <))

22 {

23 hour = h;

24 minute = m;

25 second = s;

26 } // end if

27 else

28 throw invalid_argument(

29);
30 } // end function setTime

31

32 // print Time in universal-time format (HH:MM:SS)
33 void Time::printUniversal () const

34 {

35 cout << setfill() << setw() << hour <<

36 << setw() << minute << << setw() << second;
37 1} // end function printUniversal

38

Fig. 9.2 | Time class member-function definitions. (Part 2 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

39 // print Time 1in standard-time format (HH:MM:SS AM or PM)
40 void Time::printStandard() const

41 {

42 cout << ((hour == || hour ==) ? : hour %) <<
43 << setfill() << setw() << minute << << setw(
44 << second << (hour < ? :)

45 } // end function printStandard

Fig. 9.2 | Time class member-function definitions. (Part 3 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.2 Time Class Case Study (cont.)

Before C++11, only static const int
data members (which you saw in Chapter 7)
could be initialized where they were declared

In the class body.

For this reason, data members typically should
be 1initialized by the class’s constructor as there
IS no default initialization for funaamental-
type data memabers.

As of C++11, you can now use an /n-c/ass
/nitializerto initialize any data member where
1t’s declared in-the class-definition.

9.2 Time Class Case Study (cont.)

Parameterized stream manipulator set £111 specifies the fill
character that is displayed when an integer is output in a field
wider than the number of digits in the value.

The fill characters appear to the /eft of the digits in the
number, because the number is right aligned by default—for
left alignedvalues, the fill characters would appear to the
right.

If the number being output fills the specified field, the fill
character will not be displayed.

Once the fill character is specified with setfi11, it applies
for a//subsequent values that are displayed in fields wider than
the value being displayed.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

»

Error-Prevention Tip 9.2

Each sticky setting (such as a fill character or floating-
point precision) should be restored to its previous setting
when it’s no longer needed. Failure to do so may result
in incorrectly formatted output later in a program.
Chapter 13, Stream Input/Output: A Deeper Look,
discusses how to reset the fill character and precision.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.2 Time Class Case Study (cont.)

Defining Member Functions Outside the
Class Definition, Class Scope

* Even though a member function declared in a
class definition may be defined outside that
class definition, that member function is still
within that class’s scope.

e If a member function is defined in the class’s
body, the compiler attempts to inline calls to
the member function.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Performance Tip 9.1

Defining a member function inside the class definition
inlines the member function (if the compiler chooses to
do so). This can improve performance.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 9.2

Only the simplest and most stable member functions
(i.e., whose implementations are unlikely to change)
should be defined in the class header.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 9.3

Using an object-oriented programming approach often
simplifies function calls by reducing the number of
parameters. This benefit derives from the fact that
encapsulating data members and member functions
within a class gives the member functions the right to
access the data members.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 9.4

Member functions are usually shorter than functions in
non-object-oriented programs, because the data stored in
data members have ideally been validated by a
constructor or by member functions that store new data.
Because the data is already in the object, the member-
function calls often have no arguments or fewer
arguments than function calls in non-object-oriented
languages. Thus, the calls, the function definitions and
the function prototypes are shorter. This improves many
aspects of program development.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Error-Prevention Tip 9.3

The fact that member function calls generally take either
no arguments or substantially fewer arguments than
conventional function calls in non-object-oriented
languages reduces the likelihood of passing the wrong
arguments, the wrong types of arguments or the wrong
number of arguments.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.2 Time Class Case Study (cont.)

Using Class TTme

e Once class T1me has been defined, it can be

used as a type in object, array, pointer and
reference declarations as follows:

Time sunset; // object of type Time

array< Time, 5 > arrayOofTimes; // array of 5 Time objects
Time &dinnerTime = sunset; // reference to a Time object
Time *timePtr = &dinnerTime; // pointer to a Time object

 Figure 9.3 uses class T1me.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

1 // Fig. 9.3: fig09_03.cpp

2 // Program to test class Time.

3 // NOTE: This file must be compiled with Time.cpp.

4 #include <iostream>

5 #include <stdexcept> // for invalid_argument exception class
6 #include // include definition of class Time from Time.h
7 using namespace std;

8

9 1int mainQ)

1o {

11 Time t; // instantiate object t of class Time

12

13 // output Time object t's initial values

14 cout << ;

15 t.printUniversal(); // 00:00:00

16 cout << ;

17 t.printStandard(); // 12:00:00 AM

I8

19 t.setTime(, ,): // change time
20

Fig. 9.3 | Program to test class Time. (Part | of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// output Time object t's new values

cout << :
t.printUniversal(); // 13:27:06

cout << :
t.printStandard(); // 1:27:06 PM

// attempt to set the time with invalid values

try
{
t.setTime(, ,); // all values out of range
} // end try
catch (invalid_argument &e)
{
cout << << e.what() << endl;

} // end catch

// output t's values after specifying invalid values
cout <<
<< ;
t.printUniversal (); // 13:27:06
cout << ;
t.printStandard(); // 1:27:06 PM
cout << endl;

} // end main

Fig. 9.3 | Program to test class Time. (Part 2 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

The initial universal time 1is 00:00:00
The initial standard time 1is 12:00:00 AM

Universal time after setTime is 13:27:06
Standard time after setTime is 1:27:06 PM

Exception: hour, minute and/or second was out of range

After attempting invalid settings:
Universal time: 13:27:06
Standard time: 1:27:06 PM

Fig. 9.3 | Program to test class Time. (Part 3 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

